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Rue de la Chocolaterie, BP 3410, 41034 Blois Cedex, France

Received 25 March 2004; received in revised form 30 November 2005; accepted 19 December 2005

Available online 9 March 2006
Abstract

Complementary to classical modal analysis, usually performed on a test bench, identification of in-operation structures

is more and more widely performed by the means of so-called ‘‘stochastic identification’’. In this framework, modal

information should be usefully completed by a criterion indicating the importance of each mode in the total structure

response. In this paper, a mechanics-based energetic criterion is proposed in three forms: kinetic energy, potential energy

and dissipated power. In the framework of stochastic subspace analysis, a method for the identification of these three

quantities is developed. Two simulation test cases with two then five degrees of freedom confirm the method accuracy.

Next an experimental test case is presented and analysed. Its validation requires the development of an independent

approach. Globally the comparison of both methods shows satisfactory correlation. Finally a real-life case is used to

illustrate some practical difficulties of the method.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Input– output and output-only analysis

From its beginnings, modal analysis has usually been performed by submitting a structure to a given
excitation, then capturing its dynamic response by means of appropriate sensors. The analysis of crossed
correlations between input and output signals provides the structure modal characteristics, generally presented
in the mathematical form of transfer functions [1]. Then the structure behaviour in real-life conditions can be
simulated by integrating excitations into the dynamic model.

This approach accurately provides the pure characteristics of the structure: modal frequencies, damping
ratios and normal modes. However, the method fails when the excitations cannot be evaluated with sufficient
accuracy. Indeed in many real-life situations, these excitations are unknown, largely scattered and ill-
structured. Considering for example a train carriage, aerodynamic excitations are applied all over the body,
while rolling excitations resulting from complex wheel–rail–ballast interactions continuously pass from the rail
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A;Ac transition matrices of the discrete and
continuous state equations

Bc excitation matrix of the continuous state
equations

C observation matrix of the discrete state
equation

Cd ;Cv;Ca selection matrices to extract displace-
ments, velocities and accelerations from
the state vector

f external force vector
K; k; kp stiffness matrix, modal stiffness matrix

and its pth diagonal term
M;m;mp mass matrix, modal mass matrix and its

pth diagonal term
N length of the available recorded signals
Pd ;P

ðpÞ
d identified dissipated power and its pth

modal contribution
q modal coordinate vector
T;T1;T2 base change matrix from natural to

identification space, its upper and lower
halves

Te, tmax sampling period and total record time
u;U displacement vector in the state equation

and in FE analysis
W k;W

ðpÞ
k identified kinetic energy and its pth
modal contribution

W p;W
ðpÞ
p identified potential energy and its pth
modal contribution

x; y natural state vector and output vector of
the state equation

c damping matrix of a structure
Cb extended observability matrix of order b
d̄; d selection matrices to extract the upper

and lower halves from a matrix
D; D1; D2; D

0 excitation matrix of the discrete
state space equations, its upper and lower
halves and its inverse

Zp; lp respectively pth damping ratio and com-
plex pole

l̂; m̂k eigenvalue matrix and its kth diagonal
term

jp pth normal mode of a structure
U normal mode matrix of a structure
W;w;Wi;wi normal mode matrices (from FE

analysis), complete and reduced, and
their ith column vectors

Op pth modal angular frequencies

Sub and superscripts

( � )k and ( � )k respectively, line k and column k of
a matrix ( � )

�̂ estimate of the variable ‘‘ � ’’ from identi-
fication procedure

� value of the variable ‘‘ � ’’ obtained from
‘‘direct method’’ (validation)
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to the body throughout the axles. Excitations can sometimes be approximately estimated, as is the case for
instance in aeronautics, by means of numerical simulation. Mathematical coupling of structure and
environmental models can then be performed. However in some cases this is not possible, so that a different
approach is needed.

The research on the subject has progressed rapidly during the last decades. Early papers considered the
problem in the framework of parametric identification: autoregressive (AR), autoregressive-moving-average
(ARMA). The first industrial applications were presented, applied for instance to the identification of an
offshore platform [2]. At the end of the 1990s further developments—some with industrial applications [3]—
resulted in the present ‘‘subspace stochastic identification’’ under various versions. Papers by Van Overshee
and De Moor [4] (N4SID), Viberg [5] (IV-4SID), Verhaegen [6] (MOESP), Basseville et al. (Covariance-based
approach) [7], and their co-authors provide a large overview on this evolution.

Contrasting with the classical input–output analysis, generally implemented on a test bench, these methods
are basically output-only analyses, thus directly operating on the structure in-operation. Obviously the
excitation is unknown, and moreover must be regarded as part of the system, with its own contribution to
dynamics, possibly coupled to that of the structure. Consequently the stochastic nature of the excitation
entails some statistical dispersion of the identified parameters [8,9]. The problem of sensor placement is also
relevant to this situation, since a transfer matrix cannot be completely rebuilt in this case. For these reasons,
on-bench analysis and stochastic analysis must be considered complementary, each one having its own
advantages and drawbacks.
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1.2. The need for mode classification

From the usual input–output procedure, modes appear with very different amplitudes. These differences are
the direct consequences of the excitation levels but also of the transducer locations through the notion of
participation factors. They can provide some mode classification only by reference to this specific information.
However it should not be forgotten that in real-life conditions any identified mode, even hardly detectable, is
liable to become a major one at some time, provided that the structure is excited under an appropriate
frequency and a suitable force distribution. For this reason, up to now, the engineer has designed a structure
by considering all the modes with the same importance.

The issue of mode classification appears differently when considering the structure embedded into its
operational environment [10]. Vibration modes are excited at very different levels during the real life of the
structure and the designer should be advised to consider the most excited modes more carefully than the small
ones. This explains why engineers are becoming more and more concerned by possible in-operation modal
analysis, as a complement of classical input–output analysis. From this point of view, quantifying the
importance of modes, in the framework of in-operation modal analysis, is a worthy objective which could
allow a reliable anticipation of structural fatigue, noise generation and user discomfort. This is the object of
the present paper.

It should now be discussed which criterion should be taken for a useful mode classification. Obviously the
answer depends on the ultimate purpose of the concerned analysis. For instance to prevent material rupture, a
maximum local stress criterion would be appropriate, whereas from the acoustic point of view a global
displacement criterion would be better. In the absence of precise information, an energetic criterion is
proposed since it gathers information of both internal forces and displacements. This choice has no rational
justification, but is chosen because of its universal value.

1.3. The energetic criterion

The energetic point of view being chosen, the question arises to define which energy definition
should be considered. From elementary examples it can be shown that a pure ‘‘signal processing-
based approach’’, from the observation of signal responses, can be dramatically misleading. The
two-degrees-of-freedom (dof) example used as a simulation test case in Section 4.1 illustrates this danger.
The sensors being placed near the node of one mode, this mode almost disappears from the output spectrum.
The notion of ‘‘Power Spectral Density’’ (PSD) is by itself misleading since it does not represent any
mechanical power carried by the signal. Only a mechanics-based approach can provide a meaningful energy
definition.

To define a mechanical criterion, several definitions can be proposed. Assuming the small displacement
hypothesis, the state space equation of a structure has the form:

M€uþ c_uþ Ku ¼ fðtÞ, (1.1)

where M; c;K are, respectively, the mass, damping and stiffness matrices of the structure, u and f the
displacement and external force vectors.

At least three energetic criteria can be defined:
�
 dissipated power

Pd ¼
1

tmax

Z tmax

0

fTðtÞ_uðtÞdt, (1.2)
�
 mean kinetic energy

W k ¼
1

2tmax

Z tmax

0

_uTðtÞM_uðtÞdt, (1.3)
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mean potential energy
�
W p ¼
1

2tmax

Z tmax

0

uTðtÞKuðtÞdt. (1.4)

The choice of one criterion depends once more on the practical purpose of the analysis, and none has
universal value. For instance in terms of vibration absorption the dissipated power could be advised, but in
terms of structure reliability the mean potential energy would be better. In the present paper, the three
energetic contributions will be calculated, since they result essentially from the same mathematical
development.

In real-life conditions, let us remember that excitations f(t) are unknown, so that expression (1.2) cannot be
directly calculated. Expressions (1.3) and (1.4) cannot be determined either since matrices M and K may also
be unknown. The discussion hereafter will show that the three problems are closely related. Nevertheless mode
identification is possible, using the so-called ‘‘stochastic identification method’’ [2–6], which does not require
the knowledge of excitations. The environmental excitation is then considered part of an enlarged system
including the structure and its environment, supposedly submitted to a white noise excitation. This excitation
is an abstract concept which is introduced to represent the pure random part of the system.

Several methods of this type are available today in operational packages, but unfortunately do not provide
any information on these excitations. Moreover a problem lies in the fact that the dynamic matrices are
identified up to a similarity relationship, in the usual sense of system control theory [11]. From these matrices,
estimates of the force, displacement and velocity sequences can be derived, but in an identification space which
has no physical meaning. This indeterminacy forbids direct application of Eqs. (1.2)–(1.4). The dot-product
involved in Eq. (1.2) cannot be performed without any knowledge of the ‘‘metric tensor’’ of the identification
space. Mass and stiffness matrices involved in Eqs. (1.3) and (1.4) also depend on it. Ultimately the evaluation
of the energetic criterion is reduced to the determination of this ‘‘metric tensor’’.

The present paper investigates the possibility to identify this ‘‘metric tensor’’ and therefore the modal energy
contributions. As a result the object can only be reached by providing further information, i.e. information on
the modal masses of the structure, and also some conditions on the number of observed responses.

The theoretical development will be based on the subspace stochastic identification method, in the version
proposed by Van Overschee and De Moor [4], but could easily be adapted to other time-domain approaches,
for instance the AR method [2,12].
2. Basic equations and notations

2.1. Discrete state space equations

This section recalls some basic equations and notation which will be useful for the analysis. From the
dynamic Eq. (1.1), let us briefly recall the steps to obtain the so-called ‘‘discrete state space equation’’. Eq. (1.1)
is first written in the form of a ‘‘continuous state space equation’’ [13]:

_x ¼ Acxþ Bcf, (2.1)

where x stands for the generalised state vector

x ¼
u

_u

� �
(2.2)

and

Ac ¼
0 I

�M�1K �M�1c

" #
; Bc ¼

0

M�1

� �
(2.3a, b)

for the transition and input matrices.
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The discrete state space equation is obtained from time integration of Eq. (2.1), then comparing the
responses at two moments kTe and ðk þ 1ÞTe, Te being the sampling period. Defining a ‘‘discrete transition
matrix’’

A ¼ eTeAc (2.4)

the discrete state space equation is finally obtained in the form [13]:

xðk þ 1Þ ¼ AxðkÞ þ

Z Te

0

eðTe�tÞAcBcfðkTe þ tÞdt (2.5)

Generally, vector f is considered as nearly constant during the time interval ½kTe; ðk þ 1ÞTe�, for example
equal to its value at time kTe noted f(k). Moreover, state vector x is never completely observed, but generally
either a part, or some linear combination y of the state variables is captured. Noting

D ¼
Z Te

0

eðTe�sÞAc dt (2.6)

and

wðkÞ ¼ DBcfðkÞ ¼ D
0

M�1fðkÞ

" #
;

vðkÞ ¼ LfðkÞ

��������
(2.7a, b)

the dynamic equation takes the form:

xðk þ 1Þ ¼ AxðkÞ þ wðkÞ;

yðkÞ ¼ CxðkÞ þ vðkÞ:

����� (2.8a, b)

2.2. The subspace method

In the framework of stochastic analysis, the excitation forces are unknown. Model (2.8) is then formally
written, signals w and v being regarded as white noises.

Various methods have been proposed [4–6] for the identification of system (2.8). The main ideas are briefly
summarised. The starting point is always the identification of the ‘‘extended observability matrix’’

Cb ¼

C

CA

. . .

CAb�1

2
6664

3
7775, (2.9)

where b is a chosen index. To reach this objective, the first step is the elimination of the noises from the
dynamic equations. That is performed through the introduction of two response subspaces. One subspace is
defined by the a response sequences starting, respectively, from time 0 to time a� 1. Let it be called ‘‘past
response subspace’’. The other one is defined by the b response sequences starting from time a to time
aþ b� 1, and is called ‘‘future response subspace’’. Projecting the ‘‘future subspace’’ onto the ‘‘past
subspace’’, noises asymptotically vanish since they are orthogonal to any independent signal. Let Yy be the
matrix whose lines contain the b projected sequences. The second step performs simultaneously a space size
reduction and the extraction of Cb from Yy. That is performed from the singular value decomposition of Yy

Yy ¼ Q̂ Ŝ V̂
T
¼ ½ Q̂s Q̂n �

Ŝs 0

0 Ŝn

" #
V̂

T

s

V̂
T

n

2
4

3
5, (2.10)

where the diagonal sub-matrix Ŝs gathers the r most significant singular values of Yy.
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The extended observability matrix Cb is then estimated from matrix Q̂s. Generally, the choice

Ĉb ¼ Q̂sŜ
1=2

s (2.11)

is made, but actually Cb is still defined up to an arbitrary right multiplication by some square matrix T. It is
well known that this indetermination simply corresponds to a change of state space, and has no effect on the
identified modal parameters.

From Q̂s matrices A and C can be estimated [4,5,14,15], considering the ‘‘shift structure’’ of Cb, as
illustrated by Eq. (2.9). Once more, the system fA;Cg is obtained up to a similarity relationship, in the usual
sense of the system control theory.

An additional result was shown by Van Overschee and De Moor [4] who pointed out the physical meaning
of the joint factor of Cb in the SVD, proving relation:

Yy ¼ ĈbX̂a (2.12)

where X̂a is a sequence of ‘‘predictive states’’ fx̂ðkÞ; k4ag—in the sense of Kalman filter prediction—estimated
from moment a earlier data

X̂a ¼ x̂ðaÞ x̂ðaþ 1Þ . . . x̂ðaþN � 1Þ
� �

. (2.13)

He also proved that unbiased estimates Â and Ĉ of the dynamic matrices can be obtained from the least-
squares solution of the equation

X̂aþ1

Ya

" #
¼

Â

Ĉ

" #
X̂a, (2.14)

where Ya is a sequence of vectors defined from y(k) as Xk was from xðkÞ in Eq. (2.13).
The eigenmodes of the structure are finally obtained from the eigendecomposition of matrix Â. If s is the

eigenvector matrix, the matrix

½l̂� ¼ s�1Â s (2.15)

is diagonal. Eigenvalues m̂p, obtained in conjugate pairs, finally provide estimates of modal frequencies Op and
modal damping ratios Zp by the equations:

l̂p ¼
1

Te

Lnðm̂pÞ; l̂p ¼ �OpZp þ jOp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2p

q
. (2.16a, b)

This approach simultaneously allows an estimation of the system noises. Van Overschee and De Moor [4]
proved that an unbiased estimate is given by

ŵk ¼ x̂ðk þ 1Þ � Â x̂ðkÞ;

v̂k ¼ yðkÞ � Ĉ x̂ðkÞ:

����� (2.17a, b)

All the elements of the state space model (2.8) are thus estimated. Several authors [8,9] showed that the
accuracy of the identification directly depends on the length N of the analysed data records, with standard
deviations decreasing like 1=

ffiffiffiffiffi
N
p

.

2.3. Relationship between natural, identification and modal spaces

As was pointed out above, the dynamic matrices are obtained up to a similarity relationship, defined by an
arbitrary transformation matrix T. The key point to evaluate mechanical energy meaningfully is the return to
the natural space. Matrix T can be used to perform this operation.

At this point three spaces are involved in the formulation. From the identification procedure, all the
information is obtained in the so-called ‘‘identification space’’ where transition matrix Â is defined. The
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eigendecomposition of Â brings us into the ‘‘modal space’’ through transformation matrix s, as defined by Eq.
(2.15). Finally, three base changes can be defined:
�
 ‘‘identification space’’ towards ‘‘modal space’’:

x̂ ¼ sn, (2.18)

where x stands for the vector of modal coordinates.

�
 ‘‘natural space’’ towards ‘‘identification space’’

x ¼ Tx̂. (2.19)
�
 ‘‘natural space’’ towards ‘‘modal space’’

x ¼ hn with h ¼ T s. (2.20a, b)

3. Return to the ‘‘natural space’’

3.1. Space change matrix

In the ‘‘identification space’’, the relationship between discrete and continuous transition matrices is

Âc ¼
1

Te

Ln Â. (3.1)

In the ‘‘natural space’’, continuous matrix Ac has the special structure (2.3a). The problem is thus to find
some matrix T which brings back matrix Âc to this form [16]. First recall that both continuous matrix Ac and
discrete matrix A are transformed from one state space to another one by the same transformation matrix T.
This can be expressed as

Âc ¼ T�1AcT; Ĉ ¼ CT (3.2a, b)

which yields

AcT ¼ TÂc or
0 I

�M�1K �M�1c

" #
T1

T2

" #
¼

T1

T2

" #
Âc, (3.3a, b)

where matrix T is split into two ðn; 2nÞ blocks, n being the number of (dof) of the structure. Eq. (3.3b) can be
displayed as

T2 ¼ T1Âc;

�M�1KT1 �M�1cT2 ¼ T2Âc:

����� (3.4a, b)

For the observation matrix C three cases must be considered.
(a)
 If only displacements are measured, C is a (l ,2n) matrix of the form

C ¼ Cd I ..
.
0

� �
(3.5)

where l being the number of sensors and Cd a ðl; nÞ selection matrix. Eq. (3.2b) results in

Ĉ ¼ CdT1. (3.6)
(b)
 If only velocities are measured, C is also a size (l ,2n) selection matrix

C ¼ Cv 0 ..
.
I

� �
(3.7)
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and, from Eqs. (3.2b) and (3.4a), it results that:

Ĉ ¼ CvT2 ¼ CvT1Âc. (3.8)
(c)
 If only accelerations are measured, which is generally the case using piezo-electric accelerometers, Eqs.
(2.8b), (2.1) then (2.3a) give

C ¼ Ca �M
�1K �M�1c

h i
(3.9)

thus, from Eqs. (3.2b), (3.9) then (3.4)

Ĉ ¼ CaT2Âc ¼ CaT1Â
2

c . (3.10)
Cases where a mixture of these signals is captured will not be considered since they do not correspond to
usual situations.

From Eqs. (3.6), (3.8) or (3.10), matrix T1 can be extracted only if the selection matrix Cd , Cv or Ca is an
identity matrix. This restriction is important. It means that the number of sensors must be at least equal to half
the size of the state space, which is theoretically the number of dof of the structure. However in the context of
pure stochastic analysis, where no prior ‘‘modelling’’ of the structure is made, the notion of ‘‘degree of
freedom’’ is unclear. Indeed in this case the latter cannot be distinguished from the notion of mode. Assuming
that all the modes are captured, at least in a defined frequency range, the modal shapes are supposed to define
a sufficient representation base of the structure behaviour in the operative framework. With this hypothesis,
the number of dof is the same as the number m of the modes observed. Therefore two cases must be
considered:
(1)
 The number l of sensors is equal to the number of modes: l ¼ m. Matrix T is then completely determined:
(a) if only displacements are observed

T1 ¼ Ĉ; T2 ¼ Ĉ Âc, (3.11a, b)

(b) if only velocities are observed

T1 ¼ Ĉ Â
�1

c ; T2 ¼ Ĉ, (3.12a, b)

(c) if only accelerations are observed

T1 ¼ Ĉ Â
�2

c ; T2 ¼ Ĉ Â
�1

c . (3.13a, b)
(2)
 The number l of sensors is inferior to the number of modes: lom . Matrix T then can be split into three
blocks:

T ¼

T11

T12

T2

2
64

3
75,

where block T11 has size ðl; 2nÞ. In case (a) for instance, sub-matrices T11, then T2 can be extracted from
Eq. (3.6): T11 ¼ Ĉ; T2 ¼ Ĉ Â

�1

c , but sub-matrix T12 remains undetermined. Actually matrix T can be
arbitrarily completed, for example by a block T12 of line vectors orthogonal to the line subspace of
matrices T11 and T2. This arbitrary choice has some consequences on what follows. Exact return to the
‘‘nominal space’’ is not possible and therefore the natural metric tensor is not restored. There is a lack of
information resulting from insufficient observation of the structure response. The relative energetic levels
can be concerned, and possibly lead to a wrong mode classification.
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3.2. Reconstruction of mass and stiffness matrices
Further calculation will show that knowledge of the mass matrix is compulsory to build the various energy
expressions. This fact can be understood from simple consideration. The reduced dynamic equation

€uþM�1c_uþM�1Ku ¼M�1f (3.14)

clearly shows that in the absence of physical information on external forces f, product M�1f can never be
dissociated. Unfortunately, in the estimation of the dissipated energy (1.2), force vector f is required alone.
Moreover in expression (1.3) of the kinetic energy, the mass matrix is explicitly concerned. The potential
energy (1.4) also involves the stiffness matrix, which can be obtained from the mass matrix as soon as the
modal frequencies Op are known.

The consequences are important; it means that a realistic estimation of the vibratory energy requires the
knowledge of the mass matrix or at least a mass matrix reduced to the observed dof.

Actually, since the transitions from ‘‘natural space’’ to ‘‘identification space’’, then to ‘‘modal space’’ are
known, such a mass matrix can be restored if at least the modal masses are known. These modal masses can in
no way be obtained from pure stochastic analysis. Their knowledge requires either some modelling effort, even
rough modelling if the purpose is only mode classification, or some deterministic identification by means of a
modal analysis in a laboratory.

Assuming these modal masses available, the reconstruction of a ‘‘physical’’ mass matrix follows a path
going from eigenspace to identification space then to natural space, using the above matrices s and T.
However, this operation requires to know the real mode shapes. From stochastic identification, complex
modes are obtained from which the normal modes can be derived after some algebraic manipulation. Another
method is to exploit the low left quarter of ‘‘physical’’ matrix Ac theoretically equal to the product:

�L ¼ �M�1K (3.15)

as shown by Eq. (2.3a). The normal modes of the structure are the eigenvectors of this sub-matrix. Finally,
‘‘physical’’ mass matrix M is obtained by the equation

M ¼ UmU�1, (3.16)

U being the matrix of these normal modes, m the diagonal matrix of modal masses. By a similar equation, the
‘‘physical’’ stiffness matrix can be obtained:

K ¼ UkU�1, (3.17)

k being the diagonal matrix of modal stiffnesses kp directly obtained from modal masses mp and modal
frequencies Op:

kp ¼ mpO2
p. (3.18)
4. Mode energetic contributions

4.1. Metric tensor of the identification space

In the ‘‘natural space’’, the dissipated energy defined by Eq. (1.2) can be approximately given by the discrete
expression

W d ¼ Te

XN�1
k¼0

fTðkÞ_uðk þ 1Þ, (4.1)

where N stands for the length of recorded signals available.
It was pointed out above that the dot-product involved in this equation cannot be applied in the

identification space since the metric tensor of this space is unknown.
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Defining the selection matrices

d̄ ¼ ½ I 0 � and d ¼ ½ 0 I � (4.2a, b)

leads to

uðkÞ ¼ d̄xðkÞ; _uðkÞ ¼ d xðkÞ. (4.3a, b)

Noting

D0 ¼ D�1 ¼
D01
D02

" #
. (4.4)

Eq. (2.7a) results in

fðkÞ ¼MD02wðkÞ. (4.5)

In terms of state variables, the dissipated power Pd is thus expressed as

Pd ¼
1

NTe

W d ¼
1

N

XN�1
k¼0

wTðkÞD0T2M d xðk þ 1Þ. (4.6)

It can be observed, from Eq. (2.6) that matrix D can be approximated, up to the first order by a scalar
matrix TeI, approximation which is sufficient for a simple mode classification. Expression (4.6) thus reduces to

Pd ¼
1

NTe

XN�1
k¼0

wTðkÞdTM d xðk þ 1Þ. (4.7)

Now the dissipated power can be expressed in terms of identified variables. All vectors are changed using
matrix T:

wðkÞ ¼ TŵðkÞ; xðkÞ ¼ Tx̂ðkÞ (4.8a, b)

which gives

Pd ¼
1

NTe

XN�1
k¼0

ŵ
T
ðkÞTTdTM dTx̂ðk þ 1Þ ¼

1

NTe

XN�1
k¼0

ŵ
T
ðkÞTT

2MT2x̂ðk þ 1Þ. (4.9)

This result shows that in the identification space, the ‘‘metric tensor’’ is defined by

G ¼ TT
2MT2 (4.10)

from which the dissipated energy can be calculated

Pd ¼
1

NTe

XN�1
k¼0

ŵ
T
ðkÞGx̂ðk þ 1Þ. (4.11)

4.2. Kinetic and potential energy estimates

Kinetic and potential energy values are expressed by Eqs. (1.3) and (1.4). Always positive, they vary
continuously according to the structure displacements. Their mean values are approximately given by

W k ¼
1

2N

XN�1
k¼0

_uTðkÞM_uðkÞ (4.12)

for the kinetic energy and

W p ¼
1

2N

XN�1
k¼0

uTðkÞKuðkÞ (4.13)

for the potential energy.
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From notations (4.3a, b) the following expressions hold

W k ¼
1

2N

XN�1
k¼0

x̂
T
ðkÞTTdTM dTx̂ðkÞ, (4.14)

W p ¼
1

2N

XN�1
k¼0

x̂
T
ðkÞTTd̄

T
Md̄Tx̂ðkÞ. (4.15)

4.3. Modal contributions to energy expressions

The contribution of each mode to the different energy expressions results from the decomposition of the
displacement in its modal components. From Eq. (2.17a)

x̂ðk þ 1Þ ¼ Â x̂ðkÞ þ ŵðkÞ (4.16)

is obtained and from Eq. (2.15)

x̂ðk þ 1Þ ¼ sl̂s�1x̂ðkÞ þ ss�1ŵðkÞ. (4.17)

This equation can be written in the form

x̂ðk þ 1Þ ¼
Xm

p¼1

x̂
ðpÞ
ðk þ 1Þ (4.18)

by defining

x̂
ðpÞ
ðk þ 1Þ ¼ s:ps

�1
p: ðm̂px̂ðkÞ þ ŵðkÞÞ. (4.19)

Likewise Eq. (4.19) is written as

x̂
ðpÞ
ðk þ 1Þ ¼ s:ps

�1
p: âpðkÞ (4.20)

if noting

âpðkÞ ¼ m̂px̂ðkÞ þ ŵðkÞ. (4.21)

The energetic contributions can now be obtained.
(1)
 Modal dissipated power
The expression of the dissipated power (4.11) can be expressed now as

Pd ¼
Xm

p¼1

P
ðpÞ
d , (4.22)

where the component

P
ðpÞ
d ¼

1

NTe

XN

k¼1

ŵ
T
ðkÞGx̂

ðpÞ
ðkÞ (4.23)

can be considered the energetic contribution of mode (p) to the total dissipated power.

(2)
 Modal kinetic energy

From Eqs. (4.12) and (4.20) the total kinetic energy is expressed as

Pk ¼
1

2

Xm

p¼1

dTs:ps
�1
p: âpðkÞ

� �T" #
M

Xm

q¼1

dTs:qs
�1
q: âqðkÞ

" #
. (4.24)
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In the brackets, products Ts:p and Ts:q restore the pth and qth columns of transformation matrix h
defined by Eq. (2.20b):

Pk ¼
1

2

Xm

p¼1

d h:ps
�1
p: âpðkÞ

� �T" #
M

Xm

q¼1

d h:qs
�1
q: âqðkÞ

" #
. (4.25)

A classical result from modal analysis theory allows a drastic simplification of this expression. Defining
matrix

Q ¼
�K 0

0 M

� �
(4.26)

together with transformation matrix h of Eq. (2.20b), a classical result expresses that the product hTQh is
diagonal.

Introducing selection matrix d defined by Eq. (4.2b), it results that the product hTdTM d h is diagonal. In
Eq. (4.25), it means that any term including a product hT:pd

TM d hq: is zero for paq. Let P
ðpÞ
k be

P
ðpÞ
k ¼

1
2
âT

p ðkÞs
�T
p: hT:pd

TM d h:ps
�1
p: âpðkÞ (4.27)

the kinetic energy is finally expressed as

Pk ¼
Xm

p¼1

P
ðpÞ
k . (4.28)

The term P
ðpÞ
k can be considered the modal contribution of mode p to the total kinetic energy.
(3)
 Modal potential energy
For potential energy a similar development leads to the expression:

Pp ¼
Xm

p¼1

PðpÞp , (4.29)

where

PðpÞp ¼
1
2
âT

p ðkÞs
�T
p: hT:pd̄

T
Kd̄h:ps

�1
p: âpðkÞ (4.30)

represents the modal contribution of mode p to the total potential energy. In this equation, matrix K was
obtained from the knowledge of modal masses by Eq. (3.18).
5. Validation of the method: simulated examples

5.1. A general test system

A n-dof system can be represented by using n independent mass-damper-spring oscillators (Fig. 1). Each
elementary oscillator being given by its mass mp, eigenfrequencies Op and damping ratio Zp, the transition
matrix of the subsystem is

AðpÞc ¼
0 1

�O2
p �2OpZp

" #
: (5.1)

The transition matrix of the whole system is obtained by assembling the elementary matrices into a block-
diagonal matrix:

Ac ¼

Að1Þc : : :

: Að2Þc : :

: : ::: :

: : : AðmÞc

2
66664

3
77775. (5.2)
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Fig. 1. An n-dof mechanical system.
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Each subsystem is excited by independent noise wp. At this point all subsystems are uncoupled. Any
coupling can be obtained by combining the response signals of the n subsystems into l output signals through
some arbitrary matrix C. Such a system is by no way different from any mechanical system since matrix C can
represent a possible assembly of rigid bars (see Section 5.2 for an example). Independent noise vector v is
finally added to the output vector to simulate some measurement noises. All the noises are white Gaussian and
are defined by their standard deviations rðwÞ and rðvÞ.

The advantage of such a system is that each oscillator is associated with one mode whose normal mode
shape is simply jp ¼ ½ 0 . . . 0 1 0 . . . 0 �T with a ‘‘1’’ at the pth place for the pth oscillator. N being
the size of the signals available, the dissipated power, kinetic and potential energy mean values associated with
the pth mode are then, respectively,

P
ðpÞ
d ¼

1

N

XN�1
k¼0

f PðkÞ _upðk þ 1Þ, (5.3)

W
ðpÞ
k ¼

1

2N

XN�1
k¼0

mp _u
2
pðkÞ (5.4)

and

W ðpÞ
p ¼

1

2N

XN�1
k¼0

kpu2
pðkÞ ¼

1

2N

XN�1
k¼0

mpO2
pu2

pðkÞ (5.5)

and can be calculated directly from the generation of the signal.
These values are supposedly unknown as well as the different variables in their expressions. Only the modal

masses, which presently are the oscillator masses, and a set of output signals are known. From this data, the
application of the identification procedure and calculation of the modal energies, from the formulas in Section
4.3, provide energy estimates P

ðpÞ
d , W

ðpÞ
k , W ðpÞ

p which can be compared to their ‘‘direct values’’ P
ðpÞ
d , W

ðpÞ
k , W ðpÞ

p .

5.2. The two-dof system

Let us consider the structure defined on Fig. 2. The structure is formed by a pair of independent mass-
damper-spring subsystems joined by a zero-mass rigid bar. Clearly the two modes are defined by the
independent oscillations of the two subsystems. All the characteristics are given in Table 1. The mode
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frequencies and damping ratios are those of the oscillators, and the mode shapes have their nodes at point A2

for the first mode and at A1 for the second one.
To simulate a measurement noise, independent Gaussian white noises are added to the output signals, with

a noise-to-signal ratio (NSR) of 1%. Let us assume that displacement sensors have been placed at points B1

and B2 near the second mode node (Fig. 2). As a consequence of this awkward sensor positioning the second
mode (frequency O2 ¼ 20) almost disappears from the transfer functions (Fig. 3). The table summarises the
results obtained from the analysis of a series of 100 records of 2000 points, using the identification method.
For all the modes, mean frequencies, damping ratios and energy values are presented. For comparison
purposes, the mean values obtained from the ‘‘direct method’’, their mean ratios to the previous ones and the
dispersions of these ratios are indicated. The results show that the modal characteristics of the system are
accurately identified as well as the mechanical energy values, however with a greater dispersion of the
dissipated power.

The results confirm that the kinetic and potential energy levels of the second oscillator are about 20%
greater than those of the first oscillator, a result which could not be anticipated from the observation of the
PSD (Fig. 3). The conclusion is worse when considering the dissipated power, which is four times greater for
the second oscillator. Although being trivial this example clearly shows the danger of a pure signal processing-
based classification.

As was highlighted in the above theory, modal masses must be provided as an input of the identification
procedure. Of course in these simulations, exact masses were given. Table 1 presents the effect of providing
wrong modal masses. A wrong classification is observed in this case. That result could have been anticipated
since in this case energy levels are directly proportional to the given modal masses, because of the
independence of the oscillators.

5.3. The five-dof system

Similarly, a five-dof system whose characteristics are given in Table 2 is tested. Mean results obtained from a
series of 100 simulations of 2000 points are presented in the table. The value of the NSR is 1%. For all modes,
the three energy values are obtained acurately, and no wrong classification occurs.

Once more, the dissipated power values are less coherent than the kinetic and potential energy ones.
Moreover, a rapid degradation of this specific result is observed when increasing the NSRs. This result may be
relevant regarding real-life applications, as will be discussed below.
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Table 1

Two-dof system: energy estimates from identification and direct methods

2-dof system: statistics of 100 simulations (2000 points)

Oscillator (mode): p 1 2 Noise to signal ratios (%)

Oscillator parameters

Op (rad/s) 5 20

Zp (%) 1 2

mp 1 0.166

s (fp) 10 10

Observation matrix C (displacements) 0.9 0.1 1.0

�1.2 0.2 1.0

Identified parameters

Identified Op (rad/s) 5.006 19.99

Identified Zp (%) 1.72 2.17

Kinetic energy

Identified Wk 1.501 1.762

Wk direct 1.503 1.817

r ¼Wk/Wk 0.997 0.966

s (r) 0.009 0.012

Place (decreasing Wk) 2 1

Potential energy

Identified Wp 1.511 1.813

Wp direct 1.498 1.804

r ¼Wp/Wp 1.009 1.006

s (r) 0.034 0.014

Place (decreasing Wp) 2 1

Dissipated power

Identified Pd 0.973 4.43

Pd direct 1.038 6.04

r ¼ Pd/Pd 0.937 0.733

s (r) 0.346 0.151

Place (decreasing Pd) 2 1

Wrong modal masses given

Wrong mp 2 0.166

Identified Wk 3.003 1.762

Place (decreasing Wk) 1 2
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6. Experimental applications

6.1. The building frame model

Severe difficulties were encountered in defining an experimental validation of the method. A validation
makes sense if some alternative method exists which provides accurate comparison values. In the present case
such a method was not available and only an approximate approach, based on coarse hypotheses, could be set
up. From this point of view, this method must be looked at as a different and independent approach, possibly
less reliable than the identification method under test. For this reason this method will be called ‘‘direct
method’’ and not ‘‘validation method’’ hereafter. However, the reader will not forget that this method is not
an alternative to the ‘‘identification method’’, since it uses data which is not generally available during an in-
operation analysis.

The structure tested is a steel-made reduced model of a two-floor building whose characteristics are given in
Fig. 4. The structure being submitted to a white noise excitation onto the second floor level, the response is
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Table 2

Five-dof system: energy estimates from identification and direct methods

5-dof system: statistics of 100 simulations (2000 points)

Oscillator (mode): p 1 2 3 4 5 Noise to signal ratios (%)

Oscillator parameters

Op (rad/s) 5 10 15 20 30

Zp (%) 1 1 0.5 5 3

mp 0.33 1 0.2 0.25 5

s (fp) 10 15 5 20 25

Observation matrix C (displacements)

20 10 5 2 0 1.0

15 30 15 7 4 1.0

2 5 10 5 2 1.0

3 6 12 2.5 12 1.0

1 2 4 7 15 1.0

Identified parameters

Identified Op (rad/s) 5.00 10.0 15.0 20.0 30.0

Identified Zp (%) 1.79 1.40 0.8 4.8 2.93

Kinetic energy

Identified Wk 4.13 2.18 1.34 1.97 1.66

Wk direct 4.14 2.20 1.34 2.07 1.74

Place (decreasing Wk) 1 2 5 3 4

Potential energy

Identified Wp 4.16 2.21 1.35 2.03 1.71

Wp direct 4.13 2.19 1.33 2.04 1.70

Place (decreasing Wp) 1 2 5 3 4

Dissipated power

Identified Pd 2.83 1.99 1.05 13.54 9.75

Pd direct 2.91 2.28 1.22 16.28 12.57

Place (decreasing Pd) 3 4 5 1 2
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Fig. 3. Two-dof system: PSD of the two responses; � ¼ channel 1, J ¼ channel 2.
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captured from a set of four accelerometers installed at four structure node points 1–4, providing four 4096-
point records. An accurate frequency domain analysis is also available using the PULSE system from B & K.

The PSD of channel 1 output, for example, averaged on eight 512-point records is shown on Fig. 5. The four
channel outputs clearly reveal the existence of four main modes, i.e. in-phase floor translations, in-opposite
floor translations, in-phase floor rotations and in-opposite floor rotations. Two translation modes in the
orthogonal direction are not excited and does not appear.

The results from the identification procedure are summarised in Table 3.
As was explained above, modal masses must be given as an input of the identification program. These

masses were obtained from finite element (FE) modelling, using the ABAQUS computer code. After fitting
appropriate stiffness values for the column base rotations, this analysis confirmed the results obtained with
both the PULSE system and with stochastic identification: modal frequencies and mode shapes, and provided



ARTICLE IN PRESS

Table 3

Frame model: energy estimates from identification and direct methods

Frame model: identification and direct methods: (4096 points)

Mode p 1 2 3 4

FE analysis

Fp (Hz) 35.6 56.3 131.2 212.8

Identified parameters

Identified Fp (Hz) 35.03 60.44 127.1 207.0

Identified Zp (%) 2.76 2.1 0.8 1.0

Kinetic energy

Identified Wk (� 103) 710 1534 866 85

Place (decreasing Wk) 3 1 2 4

Wk direct (� 103) 886 1702 828 84

Place (decreasing Wk) 2 1 3 4

Potential energy

Identified Wp (� 103) 703 1532 868 84

Place (decreasing Wp) 3 1 2 4

Wk direct (� 103) 886 1702 828 84

Place (decreasing Wp) 2 1 3 4

Dissipated power

Identified Pd (� 103) 4426 2869 899 586

Place (decreasing Pd) 1 2 3 4

Pd direct (� 103) 5864 628 5 �109

Place (decreasing Pd) 1 2 3 4
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the modal masses which have been given in Table 3. Unfortunately the FE analysis did not allow a reliable
simulation of the system behaviour under the real force program. Damping effects are not usually included
into FE models, so that under continuous excitation the response infinitely increased, leading to an unrealistic
structure behaviour. Consequently no energetic estimation could be obtained from this analysis.
6.2. The ‘‘direct method’’

To obtain some energy estimates, a simplified method was developed. It is assumed that four modes only are
excited by the external excitation. This is probably a coarse hypothesis but it is coherent with the fact that in
the involved frequency range only these modes are identified. These modes thus set up a sufficient basis for the
system displacements. Let fWi; i ¼ 124g be the set of four complete mode shapes resulting from the FE
analysis (size Nd ¼ 150,000 dof), W the (Nd� 4) column matrix of these mode shapes. Let fwi; i ¼ 124g be
the set of four reduced mode shapes (size 4) extracted from modes Wi at the four nodes 1–4, and w the matrix
of these reduced mode shapes. From the previous hypothesis response U(t) of the structure is continuously a
combination of modes Wi:

UðtÞ ¼ WqðtÞ (6.1)

q(t) being the modal coordinates vector. The same relation holds for the reduced coordinates

uðtÞ ¼ wqðtÞ (6.2)

Therefore at any moment t the response u(t) can be projected onto the base wi:

qðtÞ ¼ w�1uðtÞ. (6.3)
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The same relation holds for accelerations:

€qðtÞ ¼ w�1 €uðtÞ. (6.4)

Another problem occurred due to the fact that sensors do not provide displacements but accelerations.
Numerical integration is not possible since the highest frequencies are described by no more than three or four
points per period. The difficulty was solved by having recourse to another approximate hypothesis.
Essentially, a one-mode low-damped system has significant response only in the vicinity of its modal frequency
Oi. It results that the accelerations can be derived from velocities approximately by multiplying them by Oi

(and p/2 phase rotation), and from displacements by multiplying them by �O2
i . Therefore each one of the four

modal acceleration sequences €qiðtÞ can be divided by Oi to obtain (approximately) a modal velocity sequence
_qiðtÞ, and by �O2

i to obtain a modal displacement sequence qiðtÞ.
Finally, the modal masses resulting from the FE analysis are used to build approximate values of energetic

levels:
�
 kinetic energy: the usual definition

W kðtÞ ¼
1
2
_U
T
ðtÞM _UðtÞ (6.5)

in modal space results in:

W
ðpÞ
k ðtÞ ¼

1
2

mp _q
2
pðtÞ (6.6)

for each mode p. A mean value of the kinetic energy is thus obtained from:

W
ðpÞ
k ¼

1

2N

XN

k¼1

mp _q
2
pðkÞ. (6.7)
�
 potential energy: the usual definition

W pðtÞ ¼
1
2
UTðtÞKUðtÞ (6.8)

in modal space results in

W ðpÞ
p ðtÞ ¼

1
2

kpq2
pðtÞ (6.9)

for each mode i. Using Eq. (3.18) and remembering the mean from which the velocity and displacement
sequences were obtained, it results that from this approach W

ðpÞ
k ðtÞ ¼W ðpÞ

p ðtÞ,
thus

W
ðpÞ
k ¼W ðpÞ

p . (6.10)
�
 dissipated power: excitation being applied onto node 1, a modal velocity at this node can be obtained at any
moment t from

_uðpÞ1 ðtÞ ¼ _qpðtÞcp1. (6.11)

Dissipated power results from the usual definition

P
ðpÞ
d ¼

1

N

XN

k¼1

f ðkÞ _uðpÞ1 ðkÞ. (6.12)

6.3. Comparison of the results of the identification and direct methods

Table 3 shows the results obtained from both the identification method and the ‘‘direct method’’. Kinetic and
potential energy values are in good agreement, even considering the rough approximations which were made in the
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elaboration of the ‘‘direct method’’. This is not the case for the dissipated power, where the ‘‘direct method’’
provides incoherent values, with a negative value for the fourth mode. On the other hand the identification method
results in all positive values, increasing in accordance with the damping ratios, as expected. The failure of the
correlated results in the case of dissipated power, especially the results from the ‘‘direct method’’, can be explained
as follows. A detailed inspection of computational intermediate results have shown that during one period,
dissipated energy is only a small fraction of the mean potential energy. The coarse hypotheses which were made to
elaborate the ‘‘direct method’’ generate an error noise whose power is of the same order as the dissipated one. This
hides the possibility to extract a satisfactory mode classification to compare with the identification method. On the
other hand, the identification approach apparently provides reliable results since some mode filtering is achieved
through coherent mathematical formulation. As a matter of fact a validation of the dissipated power obtained
from the identification method is still missing.
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Fig. 6. Z24 Bridge: PSD of sensor 7 response.

Table 4

Z24 Bridge: energy estimates from identification method

Z24 Bridge: (4096 points)

Mode 1 2 3 4 5 6 7 8

Assumed modal masses 1 1 1 1 1 1 1 1

Identified parameters

Identified Fp (Hz) 3.74 4.89 9.64 10.9 12.1 13.3 17.2 19.8

Identified Zp (%) 0.81 1.16 0.86 0.33 0.29 0.76 0.5 0.54

Kinetic energy

Identified Wk (� 10�4) 301 191 164 689 3330 1737 1950 3579

Place (decreasing Wk) 6 7 8 5 2 4 3 1

Potential energy

Identified Wp (� 10�4) 298 197 99 480 2061 1417 809 1913

Place (decreasing Wp) 6 7 8 5 1 3 4 2

Dissipated power

Identified Pd (� 10�8) 110 10 31 741 3762 676 6580 3453

Place (decreasing Pd) 6 8 7 4 2 5 1 3
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6.4. Application to a real-life case

The method developed above was finally applied to a set of measurements stemming from the
instrumentation of bridge Z24 in Switzerland, records which have been made public in order to be used as
data sets for benchmarks. The records include nine signals which were truncated here up to 4096 points. A
typical signal among them is illustrated in Fig. 6 by its PSD. The mass matrix of the structure being
unavailable, the test cannot be considered a validation but is worthwhile appreciating the possible difficulties
of a real-life case. The results are given in Table 4. Specific difficulties were encountered in applying the
method in this case. In the subspace identification the space rank must be chosen a little higher than twice the
expected number of modes. Moreover identified transition matrix Â generally has a few real eigenvalues. The
consequence is the likely presence of spurious modes. These modes could be simply ignored but the
dimensional coherence of matrix calculation requires that they be kept for further calculation. The
consequences of that are unknown.

In the absence of reliable information, the mass matrix was arbitrarily chosen as a unit matrix. The results
show that the highest modes—above 10Hz—dissipate more energy than others, independently of the peak
height. Mean potential and kinetic energies lead to the same conclusion. Besides the fact that the group of
highest frequencies probably carries much more energy than the other ones, in the absence of the modal mass
information no more result can be drawn from this example.

7. Discussion

A method to evaluate the energetic mode contributions was developed under two restrictions which are
worth discussing:
(1)
 The number of sensors must be at least equal to the number of modes. Strictly resulting from the present
analysis, the conclusion is that if this condition is not fulfilled, the missing information can be arbitrarily
completed, but a reliable energy estimation cannot be guaranteed. In the analysis of a complex body, such
as a plane or a car body, this condition is linked to the issue of sensor locations. The problem is complex in
itself and deserves proper investigation.
In the case where the above condition cannot be fulfilled, an original solution can be expected from a
strategy of multiple analysis, using each time a different stationary excitation sequence. In practice this
would mean that the structure is analysed in various operating conditions. The parameter over-
determination resulting from this procedure could compensate for the lack of measurement sensors. At the
present time the method has not been investigated but could be a basis for further developments.
(2)
 The mass matrix of the structure, reduced to the dof defined by the sensors, or at least the diagonal matrix
of modal masses must be available. This requirement may appear as a serious restriction for practical
applications. Possibly it may forbid any energy estimation from a pure in-operation analysis. However in
general, modal mass estimates—or at least rough estimates if only mode classification is expected—may be
available from a previous analysis or from the simplified modelling of the structure. For instance in the
field of aeronautics, it can be assumed that the presence of environmental air does not essentially modify
the modal masses, which are mainly attached to the structure masses. On the other hand, in the case of an
offshore platform, the structure modal masses are modified because of the presence of added masses due to
the water. However, in this case, from the knowledge of mode shapes, the elementary theory of
fluid–structure coupling allows an approximate estimation of these masses.
Assuming that the above two conditions are fulfilled, it was shown that the identification method allows a
mechanics-based classification of modes in terms of energy, in the framework of an in-operation analysis. In
simulation the reconstruction of mode energetic contributions—mean kinetic energy, mean potential energy
and dissipated power—was reached and verified accurately for a two- and a five-dof system.

To provide some appreciation of the method performance in practical applications, a reduced model of a
two-floor building, submitted to white noise excitation, was studied. Modal masses were extracted from a FE
analysis and given as an input to the identification program. A ‘‘direct approach’’ using coarse hypotheses was
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proposed to compare with the identification method. The results of both methods showed satisfactory
agreement except for the dissipated power, which was obtained with non-coherent values from the ‘‘direct
approach’’. Clearly this was a consequence of the severe approximations made in the elaboration of the ‘‘direct
method’’. On the other hand, from the identification method, dissipated power was obtained with apparently
coherent values.

As the ‘‘direct method’’ above mentioned is only approximate, a more accurate validation would require
that the experiment be made with perfect control of the excitation system. Assuming that these excitations are
driven so that a pure combination of modes is involved, a direct evaluation of the injected energy for each
mode would be possible. Such an excitation can be obtained by means of a closed-loop control with a
feedback from the structure response to the applied forces, as it is practiced in aircraft testing. This solution
can be a route for further research in this field.

Finally, the method was applied to a real-life test case involving nine transducers (nine output signals)
stemming from an experiment on a bridge. As modal masses were not available, the purpose was restricted to
appreciate the specific difficulties of such a complex case. The presence of real modes resulting from the
identification process was remarked as a difficulty whose consequences on the results are unknown.

8. Conclusion

The purpose of this study was to provide a reliable method to classify the vibration modes of a structure
from an energetic point of view, in the framework of an in-operation modal analysis. Such an evaluation
would be useful to point out which modes are really activated during the structure real life, thus deserve the
designer’s special attention for.

The conclusion of the study can be summarised as follows: reliable values of mean modal kinetic energy,
mean modal potential energy, can be reconstructed from the identification procedure provided that a sufficient
number of sensors are used and that the set of modal masses is available. Then these values can be confidently
used as energetic criteria for mode classification. Modal dissipated power can be reconstructed in the same
way, but the reliability of the result could not be firmly determined except from pure simulation examples.
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Proceedings of the second congress ‘‘Analyse Vibratoire Expérimentale’’, Blois, France, November 13–14, 2003.

[11] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

[12] L. Ljung, System Identification: Theory for the User, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[13] S.M. Pandit, Modal and Spectrum Analysis: Data Dependant Systems in State Space, Wiley, New York, 1992.

[14] B. De Moor, Mathematical concepts and techniques for modeling of static and dynamic systems, Doctoral dissertation, Department of

Electrical Engineering, Kath. University, Leuven, Belgium, 1988.

[15] J.N. Juang, Applied System Identification, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[16] C.F. Hung, W.J. Ko, C.H. Tai, Identification of dynamic systems from data composed by combination of their response components,

Engineering Structures 24 (2002) 1441–1450.


	Energetic mode contributions in stochastic modal analysis: �An application to mode classification
	Introduction
	Input-output and output-only analysis
	The need for mode classification
	The energetic criterion

	Basic equations and notations
	Discrete state space equations
	The subspace method
	Relationship between natural, identification and modal spaces

	Return to the ’’natural space’’
	Space change matrix
	Reconstruction of mass and stiffness matrices

	Mode energetic contributions
	Metric tensor of the identification space
	Kinetic and potential energy estimates
	Modal contributions to energy expressions

	Validation of the method: simulated examples
	A general test system
	The two-dof system
	The five-dof system

	Experimental applications
	The building frame model
	The ’’direct method’’
	Comparison of the results of the identification and direct methods
	Application to a real-life case

	Discussion
	Conclusion
	References


